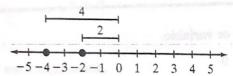

Name : _____

8th Grade

Summer Math Packet

Integers and Absolute Value


Compare. Use >, <, or = to complete each statement.

Graph -4 and -2 on the number line.

A number on the left is less than a number on the right. Thus, -4 is less than -2.

$$-4 < -2$$

The absolute value of a number is its distance from zero on the number line.

Thus |-4| = 4 and |-2| = 2.

Since 4 > 2, |-4| > |-2|

Compare. Use >, <, or = to complete each statement.

The Distributive Property

According to the Distributive Property, you distribute or "pass out" a multiplication to each part of a sum or difference in parentheses. In 2(a + b) = 2a + 2b, we "pass out" the 2 by multiplying it by both the a and the b.

Multiply 6(x - 9).

$$6(x-9) = 6x - 6(9)$$
$$= 6x - 54$$

Multiply (4 - h)(-3).

$$(4 - h)(-3) = 4(-3) - h(-3)$$

$$= -12 - (-3h)$$

$$= -12 + 3h$$

$$= 3h - 12$$

Complete with the appropriate number or variable.

1.
$$12(5+9) = 12 \cdot 5 + ____ \cdot 9$$

3.
$$z(a-b-c) = \underline{\qquad} \cdot a - z \cdot \underline{\qquad} \cdot \underline{\qquad}$$

5.
$$p[(-3) + n] = p \cdot ___ + ___ .$$

Multiply each expression.

6.
$$4(x + 5) =$$

7.
$$(6-m)(-4) =$$

8.
$$s(-6+t) =$$

9.
$$8(j-2k+l) =$$

10.
$$(z-4)(-5) =$$

11.
$$9[(-7) - y] =$$

Paris.

Simplify 5n + (-n - 4)(-2).

$$5n + (-n - 4)(-2)$$

$$=5n + (-n)(-2) - 4(-2)$$

$$=5n+2n+8$$

$$= (5 + 2)n + 8$$

$$= 7n + 8$$

Use the Distributive Property.

Multiply. Think of -4(-2) as +(-4)(-2).

Use the Distributive Property to combine like terms.

Add.

Complete each equation.

1.
$$9a - 7a + 5$$

$$= (9 - 7) _ + 5$$

$$=$$
 _____ $a + 5$

2.
$$5k - 4 - 8k$$

$$= 5k - 8$$
_____ - 4

$$= (5 - 8) _ _ - 4$$

Simplify each expression.

5.
$$2(n-4)+3$$

7.
$$5(2y + 1) - 7y$$

9.
$$8c + 5(c - 3)$$

11.
$$q(-3) + 3(2 + q)$$

13.
$$(-3)(1-2n)+2(n+4)$$

4.
$$7 + x - 7x$$

6.
$$-3(a+5)+9$$

8.
$$2(4-3t)-(-3)+2t$$

10.
$$-2(-4-3s)$$

12.
$$(3 + k)(-4) - 5k$$

14.
$$9p - 3(5p + 2) + 6$$

Solving Equations by Adding or Subtracting Decimals

Solve the equation n + 3.2 = -4.7.

$$n + 3.2 = -4.7$$

$$n + 3.2 - 3.2 = -4.7 - 3.2$$
 Subtract 3.2 from each side.

$$n = -7.9$$
 Simplify.

Solve each equation.

1.
$$n - 17.9 = -31.05$$

2.
$$h + (-8.5) = -0.6$$

3.
$$y - 33.4 = 81.9$$

$$h =$$

4.
$$t + 18.5 = -41$$

6. p - 1.1 = 4.4

5.
$$h + 20.4 = -15.7$$

$$h = \underline{\hspace{1cm}}$$

7.
$$a + 106.7 = 62.3$$

8.
$$z - 241.6 = 32.7$$

$$z =$$

Solving Equations by Multiplying or Dividing Decimals

Solve the equations 0.7x = -2.8 and $\frac{x}{1.5} = 0.2$.

$$0.7x = -2.8$$

0.7x = -2.8 Write the equation.

$$\frac{0.7x}{0.7} = \frac{-2.8}{0.7}$$

 $\frac{0.7x}{0.7} = \frac{-2.8}{0.7}$ Divide each side by 0.7.

$$x = -4$$

Simplify.

$$\frac{x}{1.5} = 0.2$$

Write the equation.

$$\frac{x}{1.5}(1.5) = 0.2(1.5)$$

 $\frac{x}{1.5}(1.5) = 0.2(1.5)$ Multiply each side by 1.5.

$$x = 0.3$$

Simplify.

Solve each equation.

1.
$$4x = -2.44$$

2.
$$1.8x = 5.76$$

3.
$$\frac{h}{-1.05} = -0.36$$

4.
$$\frac{z}{-0.02} = 5.9$$

$$h =$$

$$z =$$

5.
$$4.25y = 0.85$$

6.
$$\frac{n}{-1.9} = 24.6$$

7.
$$\frac{r}{8.04} = 1.55$$

8.
$$11.32a = -39.62$$

$$r =$$

$$a =$$

5

Name _____ Class _____ Date ____

Week 4

Prime Factorization and Greatest Common Factor

Find the GCF of 36 and 54.

$$36 = 2^{2} \cdot 3^{2} = 2 \cdot 2 \cdot 3 \cdot 3$$

 $54 = 2 \cdot 3^{3} = 2 \cdot 3 \cdot 3 \cdot 3$

write the prime factorization

find the common factors

GCF =
$$2 \cdot 3 \cdot 3 = 2 \cdot 3^2 = 18$$

Notice 2 is the lesser power of 2^2 and 2, and 3^2 is the lesser power of 3^2 and 3^3 .

Find the GCF.

Class

Week 5

Exponents and Multiplication

Simplify $m^3 \cdot m^4$ and $(n^2)^3$.

The base of m^3 is m and the base of m^4 is m. So, they have the same base. To multiply variables with the same base, add the exponents.

$$m^3 \cdot m^4 = m^{3+4} = m^7$$

This rule works because you are combining 3 factors of m and 4 factors of m. $m^3 \cdot m^4 = (m \cdot m \cdot m) \cdot (m \cdot m \cdot m \cdot m) = m^7$

Simplifying $(n^2)^3$ involves raising a power (n^2) to a power. To find a power of a power, multiply the exponents.

$$(n^2)^3 = n^{2 \cdot 3} = n^6$$

This rule works because you are using n^2 as a factor 3 times.

$$(n^2)^3 = n^2 \cdot n^2 \cdot n^2 = (n \cdot n) \cdot (n \cdot n) \cdot (n \cdot n) = n^6$$

Simplify each expression. Show an intermediate step.

1.
$$4^7 \cdot 4^2 = ($$
______) · (______) = ______

2.
$$a^3 \cdot a^6 = ($$
______) \cdot (______) = _____

3.
$$3x^2 \cdot 4x^5 = ($$
______) \cdot (______) = _____

4.
$$3^4 \cdot 3^3 = ($$
______) \cdot (______) = _____

5.
$$y^5 \cdot y^3 = ($$
______) \cdot (______) = _____

6.
$$7r^4 \cdot 3r^2 = ($$
______) \cdot (______) = _____

7.
$$(5^3)^4 =$$

8.
$$(h^2)^5 =$$

9.
$$(m^4)^8 =$$

10.
$$(x^3y^2)^3 =$$

11.
$$(2s^4t^5)^4 =$$

12.
$$(-pqr^2)^3 =$$

Powers of Products and Quotients

Simplify $\left(\frac{x^3}{-v^2}\right)^5$.

$$\left(\frac{x^3}{-y^2}\right)^5 = \frac{(x^3)^5}{(-y^2)^5}$$
$$= \frac{x^{15}}{(-1)^5 (y^2)^5}$$

Raise both the numerator and the denominator to the power of 5.

Multiply exponents in the numerator. Raise each factor to the power of 5 in the denominator.

$$=-\frac{x^{15}}{v^{10}}$$

Multiply exponents and simplify.

Simplify each expression.

1.
$$(2 \cdot 5)^4$$

1.
$$(2 \cdot 5)^4$$
 _____ 2. $(-3 \cdot 2)^3$ ____

3.
$$(4x)^2$$
 4. $(a^2b)^5$

4.
$$(a^2b)^5$$
 ______.

5.
$$(3ab^3)^2$$

6.
$$-(5m^2n^3)^3$$

7.
$$\left(\frac{2}{9}\right)^2$$

8.
$$\left(-\frac{7}{8}\right)^2$$

9.
$$\left(-\frac{3}{10}\right)^3$$

10.
$$\left(\frac{4}{x^4}\right)^2$$

11.
$$\left(\frac{3x}{5}\right)^3$$

12.
$$\left(-\frac{a^2}{b^5}\right)^4$$

13.
$$\left(\frac{xy^2}{2z^3}\right)^5$$

14.
$$\left(\frac{-1}{2n^3}\right)^4$$

15.
$$\left(\frac{-2r^3s}{3t^2}\right)^2$$

16.
$$\left(\frac{-3}{a^2bc^2}\right)^3$$

17.
$$(p^4q^3r^2)^3$$

18.
$$\left(\frac{x^2yz^3}{-2}\right)^4$$

19.
$$\left(\frac{5}{j^3k}\right)^2$$

20.
$$\left(\frac{ac^4}{4b}\right)^3$$

Proportions

Solve $\frac{x}{6} = \frac{10}{4}$

Method 1: Multiplication

$$\frac{x}{6} = \frac{10}{4}$$

$$\frac{x}{6} \cdot 6 = \frac{10}{4} \cdot 6$$
 Multiply each side by 6.

$$x = \frac{60}{4}$$

$$x = \frac{60}{4}$$
 Simplify.

$$x = 15$$

Method 2: cross products

$$\frac{x}{6} \times \frac{10}{4}$$

$$4x = 60$$
 Find the cross products.

$$\frac{4x}{4} = \frac{60}{4}$$
 Divide each side by 4.

$$x = 15$$
 Simplify.

Solve each proportion. When necessary, round to the nearest hundredth.

1.
$$\frac{6}{p} = \frac{18}{42}$$

3.
$$\frac{y}{9} = \frac{26}{6}$$

5.
$$\frac{63}{t} = \frac{14}{16}$$

7.
$$\frac{7}{20} = \frac{e}{70}$$

9.
$$\frac{m}{54} = \frac{5}{12}$$

11.
$$\frac{63}{18} = \frac{14}{7}$$

13.
$$\frac{5}{13} = \frac{20}{r}$$

15.
$$\frac{c}{21} = \frac{6}{20}$$

2.
$$\frac{12}{21} = \frac{x}{14}$$

4.
$$\frac{x}{9} = \frac{7}{12}$$

6.
$$\frac{28}{15} = \frac{y}{25}$$

8.
$$\frac{8}{3} = \frac{40}{k}$$

10.
$$\frac{8}{w} = \frac{5}{24}$$

12.
$$\frac{a}{70} = \frac{2}{5}$$

14.
$$\frac{6}{7} = \frac{7}{56}$$

16.
$$\frac{10}{e} = \frac{15}{27}$$

114

	Class	Date
Week 7		
***********************	••••••	Probabili
Suppose you select a letter at random from Find $P(L)$ and $P(\text{not } L)$. First determine the number of possible outwo words, so there are 12 possible outcomerandom. Next determine the number of fare two L's.	itcomes. There are 12 ines when you select a	letters in the
Thus, $P(L) = \frac{\text{number of favorable outcomes}}{\text{number of possible outcomes}} =$	$\frac{2}{12} = \frac{1}{6}$	
You can find $P(\text{not L})$ several ways. Since 2 are L, $12 - 2 = 10$ are not L.		outcomes and
Thus, $P(\text{not } L) = \frac{\text{number of favorable outcome}}{\text{number of possible outcome}}$ Also $P(\text{not } L) = 1 - P(L)$	$\frac{\text{es}}{\text{s}} = \frac{10}{12} = \frac{5}{6}$	
$=1-\frac{1}{6}=\frac{5}{6}$		
De alle de la company de de	restant 1 yats vilon	And the second s
A drawer contains 6 red socks, 4 blue so	cks, and 14 white sock	s. A sock is
pulled from the drawer at random. Find	the probability for ea	ch case.
1. $P(\text{red})$	2. <i>P</i> (blue)	
 P(red) P(red or white) 	 P(blue) P(red, white, 	
		or blue)
3. P(red or white)5. P(not red)uppose you spin a spinner that is equally	4. P(red, white,6. P(green)v likely to land on an	or blue)
3. <i>P</i> (red or white)	4. P(red, white,6. P(green)v likely to land on an	y one of the
3. P(red or white) 5. P(not red) uppose you spin a spinner that is equally umbers from 1 to 20. Find the probability. 7. P(17)	4. P(red, white,6. P(green)y likely to land on any for each event.	y one of the
3. P(red or white) 5. P(not red) uppose you spin a spinner that is equally umbers from 1 to 20. Find the probability. P(17) 9. P(a number divisible by 5)	4. P(red, white, 6. P(green) y likely to land on any ty for each event. 8. P(an odd num 10. P(26)	y one of the
3. P(red or white) 5. P(not red) suppose you spin a spinner that is equally umbers from 1 to 20. Find the probability	 4. P(red, white, 6. P(green) y likely to land on any ty for each event. 8. P(an odd nun 	y one of the

Solve $\frac{k}{5} - 9 = -7$.

$$\frac{k}{5} - 9 = -7$$

$$\frac{k}{5} - 9 + 9 = -7 + 9$$

Add 9 to each side.

$$\frac{k}{5} = 2$$

Simplify.

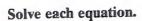
$$\frac{k}{5} \cdot 5 = 2 \cdot 5$$

Multiply each side by 5.

$$k = 10$$

Simplify.

1.
$$4n + 13 = 1$$


. ...

Subtract 13 from each side.

Simplify.

Divide each side by 4.

Simplify.

2.
$$3x - 5 = 10$$
 $x =$

3.
$$\frac{n}{2} + 10 = 7$$
 $n =$

4.
$$\frac{m}{7} - 9 = -5$$
 $m =$

5.
$$5w - 2 = -12$$
 $w = _______$

6.
$$4a + 12 = -8$$
 $a =$

7.
$$\frac{b}{3} + 8 = -7$$
 $b =$

Multi-Step Equations With Fractions and Decimals

1

Solve
$$0.25x - 0.4 = 1.6$$

You can clear the decimals first. Since 0.25 is the decimal with the greatest number of decimal places and $0.25 = \frac{25}{100}$, multiply each side by 100.

$$0.25x - 0.4 = 1.6$$

$$100(0.25x - 0.4) = 100(1.6)$$

$$25x - 40 = 160$$

$$.25x - 40 + 40 = 160 + 40$$

$$25x = 200$$

$$\frac{25x}{25} = \frac{200}{25}$$

$$x = 8$$

Multiply each side by 100.

Distribute and simplify.

Add 40 to each side.

Simplify.

Dividé each side by 25.

Simplify.

Solve each equation.

1.
$$0.8x + 2.1 = 5.3$$

2.
$$0.5k - 3.4 = 0.1$$

All rights reserved.

3.
$$2.7n + 4.1 = 36.5$$

$$k = \underline{\hspace{1cm}}$$

4.
$$0.96m - 1.8m = -12.6$$

$$n = \underline{\hspace{1cm}}$$
5. $0.7b + 6 - 0.3b = 6.8$

6.
$$1.4a + 3.5a - 4.3 = 44.7$$

$$b = _{----}$$

Simple and Compound Interest

Find the balance in an account when \$500 is deposited at 4% interest compounded semi-annually for 2 years.

The table shows the interest and balance for each half year.

Principal at Beginning of Period	Interest	Balance
½ year: \$500		
1 year:		
$1\frac{1}{2}$ year:		
2 year:		

The balance after 2 years is \$541.21.

You can also find the balance with the formula $B = p(1 + r)^n$, where B is the ending balance. The principal p is 500. The rate is for a half year; 4% annual interest equals 2% per half year. Thus r is 0.02. The number of compounding periods n is 4, because there are 4 half years in 2 years.

$$B = p(1+r)^n$$

$$B = 500(1 + 0.02)^4$$
 Substitute.

$$B = $541.22$$

Use a calculator. Round to the nearest cent.

With the formula, the ending balance is \$541.22. The difference is due to rounding error.

Find the ending balance when \$1,500 is deposited at 6% interest compounded semi-annually for 2 years.

1. Use a table.

Principal at Beginning of Period	Interest	Balance
$\frac{1}{2}$ year: \$1,500		
1 year:		
$1\frac{1}{2}$ year:		
2 year:		

2. Use the formula:

$$B = p(1 + r)^n =$$

Fractions, Decimals, and Percents

Write $\frac{7}{8}$ as a percent and 64% as a fraction in lowest terms.

Divide 7 ÷ 8.

$$\frac{7}{8} = 0.875$$

Thus
$$\frac{7}{8} = 87.5\%$$
.

64% means 64 parts per 100.

$$64\% = \frac{64}{100}$$

$$=\frac{2^4}{2^6}$$
$$=\frac{2^6}{2^7 \cdot 5^2}$$
$$=\frac{16}{25}$$

Thus
$$64\% = \frac{16}{25}$$
.

3.
$$\frac{11}{20}$$

7.
$$\frac{1}{20}$$

2.
$$\frac{3}{5}$$

4.
$$\frac{17}{25}$$

6.
$$\frac{39}{100}$$

10.
$$\frac{3}{16}$$

Write each percent as a fraction in simplest terms.